Real Interest Rates, Inflation, and Default

Sewon Hur (Cleveland Fed) Illenin Kondo (Notre Dame) Fabrizio Perri (Minneapolis Fed)

ND-PUC Luksburg Conference Recent Advances in Macroeconomics

March 15, 2019

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Cleveland, the Federal Reserve Bank of Minneapolis, or the Federal Reserve System.

Introduction

- Large fluctuations in real interest rates on sovereign debt across time and across advanced economies, e.g.,
 - Secular decline in real interest rates
 - Spikes in real rates during Euro crisis

 We argue that changes in inflation cyclicality are an important determinant of real interest rates

U.S. inflation cyclicality and real interest rates

(a) Inflation and Consumption Growth

Note: Inflation is the log difference between CPI in guarter t and t-4. Consumption growth is the log difference in real personal consumption expenditures over the same interval. Real interest rates are nominal rates on medium and long term government bonds (from the IMF IFS database) minus expected inflation computed using a linear univariate forecasting model estimated on actual inflation.

Why inflation cyclicality matters

- Procyclical $(y \downarrow \pi \downarrow)$ inflation makes nominal debt
 - Less risky to domestic lender:

real payouts \uparrow when $y \downarrow \Rightarrow$ hedging $\uparrow \Rightarrow r \downarrow$

+ More risky to borrower:

real payouts \uparrow when $y \downarrow \Rightarrow$ issuance $\downarrow \Rightarrow r \downarrow$ real payouts \uparrow when $y \downarrow \Rightarrow p(default) \uparrow \Rightarrow r \uparrow$

- $\pm\,$ How big are these effects? Which effects dominate?
- Inflation cyclicality jointly affects yields, debt, and default

Contribution

- We document an inflation-procyclicality discount
 - more cyclicality associated with lower real rates
 - but less so in periods when default is more likely
- Build a sovereign default model with domestic nominal debt
 inflation cyclicality taken as given
 e.g. changes in monetary policy regime or underlying shocks
- In calibrated model, more procyclical inflation economy has
 - Lower spreads
 - ▶ Even lower when no default risk (~ half of data estimate)
 - But larger spread spikes during debt crises

Empirical evidence

Our empirical strategy

1. Extract innovations to inflation and to consumption growth

2. Compute country-specific co-movement between these innovations for different periods

- 3. Regress real yields on inflation-consumption co-movement
 - with/without default risk

A country-by-country VAR approach

- Compute country-specific time-varying co-movement between innovations to inflation and to consumption growth
- ► Follow Boudoukh (1993)'s country-by-country VAR

$$\begin{bmatrix} \pi_{it} \\ g_{it}^c \end{bmatrix} = A_i \begin{bmatrix} \pi_{i,t-1} \\ g_{i,t-1}^c \end{bmatrix} + \begin{bmatrix} \varepsilon_{\pi it} \\ \varepsilon_{git} \end{bmatrix}$$

- sample: 19 OECD countries; quarterly data 1985Q1–2015Q4
- ► compute conditional cov(\varepsilon_{it}^{\pi}, \varepsilon_{it}^{\varepsilon_c}) using overlapping ten-year windows

Real interest rates: the inflation cyclicality discount

	Real yield on government debt		
	(1)	(2)	(3)
Inflation consumption covariance	-1.80***	-1.64***	-1.80**
	(0.54)	(0.38)	(0.64)
Lagged Debt	Yes	Yes	Yes
Mean of π and g_c residuals	No	Yes	Yes
Variance of π and g_c residuals	No	No	Yes
adj. <i>R</i> ²	0.88	0.90	0.90
Ν	1726	1726	1726

Countries: AUS,AUT,BEL,CAN,CHE,DEU,DNK,ESP,FIN,FRA,GBR, ITA,JPN,KOR,NLD,NOR,PRT,SWE,USA. Standard errors clustered by country. ** p < 0.05, *** p < 0.01

All regressions include country and time fixed effects

⇒ Change from –1 s.d. to +1 s.d. in $cov(\varepsilon_{it}^{\pi}, \varepsilon_{it}^{g_c})$ maps to -1.80 × (0.17 × 2) ~ -60 bp. in real sovereign yields

Procyclicality discount larger in good times Robustness

Real yield on government debt

	(1)	(2)	(3)
Inflation consumption covariance	-1.80**		
	(0.64)		
Covariance*1 _{no default risk}		-2.70**	-2.99***
		(0.91)	(0.70)
$Covariance^*1_{default risk}$		-1.31	-1.16
		(0.79)	(0.68)
$1_{\sf no}$ default risk	Yes	Yes	Yes
other controls incl. time & country FE	Yes	Yes	Yes
adj. R^2	0.90	0.92	0.91
Ν	1726	1438	1726

(2): $\mathbf{1}_{no \text{ default risk}} \equiv avg.$ credit rating = AAA (median).

(3): $\mathbf{1}_{no \text{ default risk}} \equiv avg.$ residual cons. growth > 0.

Standard errors clustered by country. ** p < 0.05, *** p < 0.01

⇒ Change from –1 s.d. to +1 s.d. in $cov(\varepsilon_{it}^{\pi}, \varepsilon_{it}^{g_c})$ maps to -2.99 × (0.17 × 2) ~ -100 bp. in real yields in good times

Model

A two-period model

- Competitive lenders (patient) and borrowers (less patient), both risk averse, with endowments
 - first period: $y_\ell = y_b = 1$
 - ▶ second period: $y_{\ell} = y_b = x \sim F(x)$ (aggregate risk)
- ▶ Price level in period 1 is 1, and in period 2, it is: $1+\pi(x;\kappa) \equiv [1+\kappa(\mu-x)]^{-1}$
- κ governs the cyclicality of inflation
 - if $\kappa > 0$, \Rightarrow high inflation in good times
- Debt b is nominal with price q and nominal payoff of 1

Two-period model – no default case

Borrower solves (given q)

$$\max_{b_b} u(1+qb_b) + \beta_b \int_X v\left(x - \frac{b_b}{1+\pi(x;\kappa)}\right) dF(x),$$

Lender solves (given q)

$$\max_{b_{\ell}} u(1-qb_{\ell}) + \beta_{\ell} \int_{X} v\left(x + \frac{b_{\ell}}{1+\pi(x;\kappa)}\right) dF(x),$$

• Equilibrium: $\{b_{\ell}, b_{b}, q\}$ such that

• given q, $\{b_\ell, b_b\}$ are optimal, and

•
$$b_\ell = b_b$$

Equilibrium interest rate and inflation cyclicality

As inflation moves from countercyclical to procyclical:

- lenders want to save more (better hedging with bonds)
- borrowers want to borrow less (worse hedging with bonds)
- real interest rate r = E[1/(1 + π)]/q − 1 = 1/q − 1 unequivocally falls
- equilibrium debt levels can move in either direction

This is formalized in Theorem 1.

Figure: Interest rates and cyclicality of inflation without default

Two-period model – default case

- Borrower can default by paying a cost $C(x) = \psi(x x_{\min})^2$
- ▶ Borrowers are atomistic (e.g. Dubey et al. 2005):
- Equilibrium default when costs are below repayment
- Default set

$$x:\psi(x-x_{\mathsf{min}})^2 < rac{b_b}{1+\pi(x;\kappa)}$$

 With default, inflation procyclicality can expand the default sets and alter the hedging properties of bonds (see Theorem 2) Figure: Interest rates and cyclicality of inflation with default

Takeaways

- Without default, more procyclical inflation reduces real rates
- ► With default risk, more procyclical inflation can increase rates
- Countercyclical/Procyclical inflation

 low/high repayments in bad times
 substitutes/complements default
- A country with procyclical inflation will face lower real rates if not at default risk, but might face a spike in rates in bad times
- How big are these effects?

Key assumptions of the quantitative model

Long-term debt

With short-term debt, inflation has little impact on debt pricing.

Epstein-Zin lender preferences

Using high risk aversion from asset pricing literature, CRRA yields risk-free rates that are too volatile. A key simplification: lenders use endowments (not consumption) to price bonds.

Default is very rare

If default is more likely (emerging markets probs) procyclical inflation leads to higher default risk and higher interest rates (inconsistent with initial data).

Environment

- Closed economy, discrete time t = 0, 1, 2, ..., one good
- Endowments y and inflation π follow a joint Markov process

• Let $s \equiv (y, \pi)$

- Debt market structure
 - long-term nominal bond
 - matures with probability δ
 - pays coupon payment r each period
 - subject to inflation risk

Government

Government preferences are given by

$$E_0\sum_{t=0}^{\infty}\beta_g^t u_g(g_t)$$

where 0 $<\beta_{\rm g}<\beta_{\rm \ell}<$ 1, g is government consumption, and

$$\mu_g(g) = rac{g^{1-\gamma_g}}{1-\gamma_g}$$

- Government revenue: τy
- Given the option to default, the government chooses

$$V^{o}(B,s) = \max_{c,d} \left\{ V^{c}(B,s), V^{d}(B,s) \right\}$$

Value of repayment

> The value, conditional on not defaulting, is given by

$$V^{c}(B,s) = \max_{B'} \left\{ u_{g} \left(\tau y - q(s,B') \underbrace{(B' - (1-\delta)B)}_{-\text{new issuance}} + B(r+\delta) \right) + \beta_{g} \mathbf{E}_{s'|s} \left[V^{o} \left(\frac{B'}{1+\pi'}, s' \right) \right] \right\}$$

where q(s, B') is the bond price

- Real yield is stochastic (even w/o default)
- \blacktriangleright In bad times, countercyclical inflation \sim substitute to default

Value of default

The value of default is given by

$$V^{d}(B,s) = u_{g}\left(\tau\left(y-\phi^{d}(s)\right)\right) \\ +\beta_{g}\mathbf{E}_{s|s'}\left[\theta V^{o}\left(\frac{\lambda B}{1+\pi'},s'\right)+(1-\theta)V^{d}\left(\frac{\lambda B}{1+\pi'},s'\right)\right]$$

▶ $0 \le \theta \le 1$: probability of regaining access to credit,

Value of default

▶ The value of default is given by

$$V^{d}(B,s) = u_{g}\left(\tau\left(y-\phi^{d}(s)\right)\right) \\ +\beta_{g}\mathbf{E}_{s|s'}\left[\theta V^{o}\left(\frac{\lambda B}{1+\pi'},s'\right)+(1-\theta)V^{d}\left(\frac{\lambda B}{1+\pi'},s'\right)\right]$$

- ▶ $0 \le \theta \le 1$: probability of regaining access to credit,
- $0 \leq \lambda \leq 1$: recovery rate, and

Value of default

▶ The value of default is given by

$$V^{d}(B,s) = u_{g}\left(\tau\left(y-\phi^{d}(s)\right)\right) \\ +\beta_{g}\mathbf{E}_{s|s'}\left[\theta V^{o}\left(\frac{\lambda B}{1+\pi'},s'\right)+(1-\theta)V^{d}\left(\frac{\lambda B}{1+\pi'},s'\right)\right]$$

- ▶ $0 \le \theta \le 1$: probability of regaining access to credit,
- $0 \leq \lambda \leq 1$: recovery rate, and
- quadratic cost of default

$$\phi^d(s) = d_1 \max\left\{0, \frac{1}{d_0}y + \left(1 - \frac{1}{d_0}\right)y^2\right\}$$

- default cost at mean is $\phi^d(1) = d_1$
- default costs matter when $\phi^d(y) > 0$, when $y < 1 + d_0$

Bond price

- As in Bocola and Dovis (2016) and Hatchondo et al. (2016), lenders value flows using a stochastic discount factor m(s_t, s_{t+1})
- In this environment, the bond price schedule satisfies

$$egin{aligned} q(s,B') &= eta_\ell \mathbf{E}_{s'|s} \left[rac{1-d'}{1+\pi'} \left(r+\delta+(1-\delta)q(s',B'')
ight) m(s,s')
ight] \ &+ eta_\ell \mathbf{E}_{s'|s} \left[rac{d'}{1+\pi'} q^d \left(rac{B'}{1+\pi'},s'
ight) m(s,s')
ight] \end{aligned}$$

where q^d is the price of a bond in default. default price

Cyclicality of inflation and borrowing costs

s

• With full default ($\lambda = 0$) and short term debt ($\delta = 1$), the spread definition can be written as

$$\Pr_{t} \approx \underbrace{\Pr_{t} \left[d_{t+1} = 1 \right]}_{\text{default premium}} + \operatorname{cov}_{t} \left[\frac{m_{t,t+1}}{E_{t} \left[m_{t,t+1} \right]}, d_{t+1} \right] + \operatorname{cov}_{t} \left[\frac{\mathsf{E}_{t} \left[1 + \pi_{t+1} \right]}{1 + \pi_{t+1}}, d_{t+1} \right] \\ - \underbrace{\Pr_{t} \left[d_{t+1} = 0 \right] \operatorname{cov}_{t} \left[\frac{m_{t,t+1}}{E_{t} \left[m_{t,t+1} \right]}, \frac{\mathsf{E}_{t} \left[1 + \pi_{t+1} \right]}{1 + \pi_{t+1}} \right]}_{\text{procylicality discount}}.$$

 Spreads are increasing in default probability and decreasing in inflation cyclicality

Quantitative experiments

Impact of inflation cyclicality on interest rates and debt crises

 Assess the overall impact of change in inflation cyclicality on real interest rates

 Assess the impact of default crisis under two different inflation regimes

Stochastic processes

Output and inflation follow

$$\begin{bmatrix} \log y' \\ \pi' \end{bmatrix} = \begin{bmatrix} \rho_y & \rho_{\pi,y} \\ \rho_{y,\pi} & \rho_{\pi} \end{bmatrix} \begin{bmatrix} \log y \\ \pi \end{bmatrix} + \begin{bmatrix} \varepsilon_y \\ \varepsilon_{\pi} \end{bmatrix}$$

where

$$\begin{bmatrix} \varepsilon_{y} \\ \varepsilon_{\pi} \end{bmatrix} = N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \sigma_{y}^{2} & \sigma_{\pi,y} \\ \sigma_{\pi,y} & \sigma_{\pi}^{2} \end{bmatrix} \right)$$

Estimates on OECD sample (1985–2015)

Parameters	Values	Source
Persistence ρ_y, ρ_π	0.80	author estimates
Spillovers $\rho_{\pi,y}, \rho_{y,\pi}$	0.00	author estimates
Volatility σ_y, σ_π	0.01	author estimates
Covariance $\sigma_{\pi,y}$	0.00	acyclical baseline

Lender's stochastic discount factor

We assume that

$$m(s_t, s_{t+1}) = \beta_\ell \left(\frac{y_{t+1}}{y_t}\right)^{-1} \left(\frac{W_{t+1}^{1-\gamma_\ell}}{E_t \left[W_{t+1}^{1-\gamma_\ell}\right]}\right)$$
(1)

where β_{ℓ} and γ_{ℓ} denote the lender's discount factor and risk aversion, respectively, and W_t is defined recursively (Epstein-Zin-Weil) as

$$\log W_t = (1 - \beta_\ell) \log y_t + \frac{\beta_\ell}{1 - \gamma_\ell} \log \left(E_t \left[W_{t+1}^{1 - \gamma_\ell} \right] \right)$$
(2)

Calibration of other parameters

Parameters	Values	Targets / Source
Gov't discount factor β_{g}	0.988	default prob.: 0.2 percent
Default cost at mean d_1	0.200	def. prob. $(y > \mathbf{E}(y))$: 0.0 percent
Default cost cutoff d_0	-0.028	1.5 st. dev. below mean output
Lender discount factor β_ℓ	0.990	risk-free rate: 4 percent
Lender risk aversion γ_ℓ	59	Hatchondo et al. (2016)
Gov't risk aversion $\gamma_{\rm g}$	2	Hatchondo et al. (2016)
Probability of re-entry $ heta$	0.100	average exclusion: 10 quarters †
Recovery parameter λ	0.960	recovery rate: 50 percent ‡
Tax rate $ au$	0.193	OECD gov't consumption share
Maturity δ	0.054	OECD average maturity: 4.6 years

[†]: Richmond and Dias (2008), [‡]: Benjamin and Wright (2009)

Results

The procyclical inflation regime has

- Iower borrowing costs
- despite more default crises
- Iower debt levels

	Negative	Positive	
	co-movement	co-movement	Difference
	(-1 s.d.)	(+1 s.d.)	
Spreads (percent) definition	1.57	1.31	-0.26
Default prob. (percent)	0.16	0.21	+0.05
Debt (pct. of tax receipts)	70.9	66.7	-4.24

- ► 26 bp. reduction in real rate,
 - this accounts for $\sim43\%$ of the empirical counterpart

Stronger procyclicality discount if no default risk

- > Procyclicality discount larger, without def. risk, measured by
 - Iow probability of default or above average output

	Negative	Positive	
	co-movement	co-movement	Difference
	(-1 s.d.)	(+1 s.d.)	
Spreads (percent)			
No default risk (low prob)	1.08	0.67	-0.42
No default risk (high y)	1.31	0.73	-0.58
Default risk (high prob)	5.17	5.62	+0.45
Default risk (low y)	1.82	1.86	+0.04
Default prob. (percent)			
Default risk (high prob)	0.47	0.52	+0.05
Default risk (low y)	0.31	0.39	+0.09

28 / 30

Preferences for inflation cyclicality regime

	Consumption equivalent
	(percent)
Overall	0.03
no default risk (low prob)	0.04
no default risk (high y)	0.08
default risk (high prob)	-0.06
default risk (low y)	-0.02
high default risk	-0.15

Table: Government preferences for procyclicality regime

- Borrowers (Italy/Spain?) prefer countercyclical inflation in bad times, yet prefer procyclicality in good times (Germany?)
- Strong disagreement over monetary policy!

Conclusion

 When default is not an issue, procyclical economy enjoys lower real rates

- ▶ When default is possible, the risk of default increases more for the procyclical economy → higher real rates
- Procyclical inflation quantitatively relevant in explaining the secular decline in real rates and the spike during Euro crisis
- Recessions increase the contrast over inflation cyclicality

thank you

Appendix

Conditional correlation between inflation and consumption growth VAR

Domestic share of government debt is high •••

		Year		
Country	2004	2008	2012	Mean
Australia	83.3	85.6	61.9	76.9
Belgium	50.7	41.0	58.9	50.2
Canada	77.6	83.8	72.1	77.8
Denmark	74.5	75.2	70.9	73.5
Finland	23.1	38.1	25.9	29.0
France	57.9	57.8	51.5	55.7
Germany	68.6	53.5	41.4	54.5
Italy	59.9	60.9	66.1	62.3
Japan	95.7	91.9	92.1	93.3
Netherlands	44.4	45.2	55.8	48.5
Norway	43.5	50.6	71.5	55.2
Portugal	24.0	27.3	35.9	29.0
Spain	55.7	62.6	78.1	65.5
Sweden	64.4	75.5	61.4	67.1
United Kingdom	81.9	78.1	72.4	77.5
United States	80.8	78.0	73.3	77.3
Mean	61.6	62.8	61.8	62.1

Sources: BIS, Haver

U.S. inflation cyclicality and real interest rates Gam

Note: Inflation is the log difference between CPI in quarter t and t-4. Consumption growth is the log difference in real personal consumption expenditures over the same interval. Real interest rates are nominal rates on medium and long term government bonds (from the IMF IFS database) minus expected inflation computed using a linear univariate forecasting model estimated on actual inflation.

Bond price in default **back**

The price of a bond in default satisfies

$$q^{d}(B,s) = \lambda \theta \mathbf{E}_{s'|s} \left[\frac{1-d'}{1+\pi'} (r+\delta+(1-\delta)q(s',B''))m(y,y') \right] \\ + \lambda \mathbf{E}_{s'|s} \left[\frac{1-\theta+\theta d'}{1+\pi'} q^{d} \left(\frac{\lambda B}{1+\pi'}, s' \right) m(y,y') \right]$$

where d' and B'' are default and assets given $\left(\frac{\lambda B}{1+\pi'},s'\right)\!\!,$ respectively

Measuring spreads in the model decomposition results

We measure spread as the real rate minus the risk-free rate:

$$\begin{split} \mathsf{spr}_t &= \frac{\frac{1}{\widehat{q}_{t+1}} - \frac{1}{q_{t+1}^{RF}}}{\frac{1}{\widehat{q}_{t+1}}} \\ &= 1 - \frac{\widehat{q}_{t+1}}{q_{t+1}^{RF}} \end{split}$$

where

$$\begin{aligned} \widehat{q}(s, B') &= \mathbf{E}_{s'|s} \left[(1 - d') \frac{1 + \overline{\pi}(s)}{1 + \pi'} (r + \delta + (1 - \delta) \widehat{q}(s', B'')) m(y, y') \right] \\ &+ \mathbf{E}_{s'|s} \left[d' \frac{1 + \overline{\pi}(s)}{1 + \pi'} \widehat{q}^d \left(\frac{B'}{1 + \pi'}, s' \right) m(y, y') \right] \\ q^{RF}(s) &= \mathbf{E}_{s'|s} \left[(r + \delta + (1 - \delta) q^{RF}(s')) m(y, y') \right] \end{aligned}$$

Robust to alternative specifications **Dec**

	Real yield on government debt				
	(1)	(2)	(3)	(4)	(5)
	baseline	8-year	12-year	median	10-year
		window	window	reg. ^a	yields
cov	-1.80**	-1.73***	-1.94**	-1.19***	-1.76**
$cov \times 1^{no \ def}_{credit}$	-2.70***	-2.21**	-2.73***	-1.85***	-2.32**
$cov \times 1^{no \ def.}_{cons.}$	-2.99***	-2.29***	-3.34***	-2.53***	-2.35**

Countries: AUS,AUT,BEL,CAN,CHE,DEU,DNK,ESP,FIN,FRA,GBR,ITA,JPN,KOR, NLD,NOR,PRT,SWE,USA.

Standard errors clustered by country. ** p < 0.05, *** p < 0.01

All regressions include baseline controls and country and time fixed effects

^a: Does not include lagged debt. Standard errors not clustered.

Robustness to government discount factor **Dec**

Stronger procylicality discount in good times

	Positive	Negative	
	co-movement	co-movement	Difference
	(+1.5 s.d.)	(-1.5 s.d.)	
Lower patience ($eta_{g}=$ 0.985)			
Spreads (pct)	3.68	3.77	-0.09
Spreads in good times (pct)	2.37	3.28	-0.91
Spreads in bad times (pct)	4.94	4.24	+0.70
Def. prob. in good times (pct)	0.00	0.01	-0.00
Def. prob. in bad times (pct)	1.10	0.89	+0.21
Higher patience ($eta_g=0.989$)			
Spreads (pct)	0.30	0.86	-0.55
Spreads in good times (pct)	-0.03	0.79	-0.82
Spreads in bad times (pct)	0.62	0.92	-0.29
Def. prob. in good times (pct)	0.00	0.00	0.00
Def. prob. in bad times (pct)	0.20	0.07	+0.12

Robustness to default cost threshold d_0 was

Stronger procylicality discount in good times

	Positive	Negative	
	co-movement	co-movement	Difference
	(+1.5 s.d.)	(–1.5 s.d.)	
Lower output threshold ($d_0 = -0$.035)		
Spreads (pct)	1.24	1.63	-0.40
Spreads in good times (pct)	0.57	1.44	-0.87
Spreads in bad times (pct)	1.81	1.80	+0.02
Def. prob. in good times (pct)	0.00	0.00	-0.00
Def. prob. in bad times (pct)	0.44	0.24	+0.19
Higher output threshold ($d_0 = -0$	0.020)		
Spreads (pct)	1.29	1.62	-0.32
Spreads in good times (pct)	0.64	1.44	-0.80
Spreads in bad times (pct)	1.97	1.80	+0.16
Def. prob. in good times (pct)	0.00	0.00	-0.00
Def. prob. in bad times (pct)	0.41	0.32	+0.09

Robustness to utility function **Dec**

Stronger procylicality discount in good times

	Positive	Negative	
	co-movement	co-movement	Difference
	(+1.5 s.d.)	(-1.5 s.d.)	
Epstein-Zin ($\gamma_\ell=8$)			
Spreads (pct)	1.36	1.41	-0.05
Spreads in good times (pct)	0.79	1.18	-0.39
Spreads in bad times (pct)	1.90	1.62	+0.28
Def. prob. in good times (pct)	0.00	0.00	-0.00
Def. prob. in bad times (pct)	0.43	0.34	+0.09
CRRA ($\gamma_{\ell} = 8$)			
Spreads (pct)	1.49	2.05	-0.56
Spreads in good times (pct)	1.48	2.38	-0.90
Spreads in bad times (pct)	1.51	1.74	-0.23
Def. prob. in good times (pct)	0.00	0.01	-0.01
Def. prob. in bad times (pct)	0.46	0.37	+0.09

Robustness to risk aversion •••

- Stronger procylicality discount in good times
- Procylicality discount increasing in risk aversion

	Positive	Negative	
	co-movement	co-movement	Difference
	(+1.5 s.d.)	(-1.5 s.d.)	
Lower risk aversion ($\gamma_\ell=$ 8)			
Spreads (pct)	1.36	1.41	-0.05
Spreads in good times (pct)	0.79	1.18	-0.39
Spreads in bad times (pct)	1.90	1.62	+0.28
Def. prob. in good times (pct)	0.00	0.00	-0.00
Def. prob. in bad times (pct)	0.43	0.34	+0.09
Higher risk aversion ($\gamma_\ell=120)$			
Spreads (pct)	1.07	1.96	-0.89
Spreads in good times (pct)	0.36	1.80	-1.44
Spreads in bad times (pct)	1.74	2.11	-0.38
Def. prob. in good times (pct)	0.00	0.00	-0.00
Def. prob. in bad times (pct)	0.43	0.20	+0.23

Robustness to debt maturity **Dev**

- Stronger procylicality discount in good times
- Good times discount increasing in debt maturity

	Positive	Negative	
	co-movement	co-movement	Difference
	(+1.5 s.d.)	(-1.5 s.d.)	
Shorter debt maturity (4 years)			
Spreads (pct)	0.94	1.37	-0.43
Spreads in good times (pct)	0.39	1.19	-0.80
Spreads in bad times (pct)	1.46	1.54	-0.08
Def. prob. in good times (pct)	0.00	0.00	-0.00
Def. prob. in bad times (pct)	0.38	0.24	+0.14
Longer debt maturity (6 years)			
Spreads (pct)	2.18	2.39	-0.21
Spreads in good times (pct)	1.30	2.19	-0.89
Spreads in bad times (pct)	3.03	2.58	+0.45
Def. prob. in good times (pct)	0.00	0.00	-0.00
Def. prob. in bad times (pct)	0.51	0.31	+0.21

Robustness to single default cost regime **Des**

- Stronger procylicality discount in good times
- Pprocylicality discount increasing in default cost

	Positive	Negative	
	co-movement	co-movement	Difference
	(+1.5 s.d.)	(-1.5 s.d.)	
High default cost regime $(p_h = 1)$			
Spreads (pct)	1.31	1.61	-0.30
Spreads in good times (pct)	0.63	1.43	-0.80
Spreads in bad times (pct)	1.97	1.79	+0.18
Def. prob. in good times (pct)	0.00	0.00	-0.00
Def. prob. in bad times (pct)	0.40	0.23	+0.17
Low default cost regime $(p_l=1)$			
Spreads (pct)	1.65	1.86	-0.22
Spreads in good times (pct)	0.87	1.60	-0.80
Spreads in bad times (pct)	2.39	2.11	+0.28
Def. prob. in good times (pct)	0.00	0.00	-0.00
Def. prob. in bad times (pct)	0.56	0.39	+0.17

Default sets

- ▶ In the paper, we show that there exists a unique threshold $\hat{x}(\kappa, b_b)$ such that default occurs if and only if $x \leq \hat{x}(\kappa, b_b)$
- Further, we show that the threshold increases with κ

Simple model with default

► Borrower solves (given *q*)

$$\max_{b_b} u (1 + qb_b) + \beta_b \left(\underbrace{\int_{\widehat{x}(b_b)}^{x_{\max}} u \left(x - \frac{b_b}{\pi(x)} \right)}_{\text{Repayment}} + \underbrace{\int_{x_{\min}}^{\widehat{x}(b_b)} u \left(x - C(x) \right)}_{\text{Default and suffer cost}} \right) dF(x)$$

• Lender solves (given q and $\hat{x}(b_b)$)

$$\max_{b_{\ell}} u \left(1 - qb_{\ell}\right) + \beta_{\ell} \left(\underbrace{\int_{\widehat{x}}^{x_{\max}} u \left(x + \frac{b_{\ell}}{\pi(x)}\right)}_{\text{Repayment}} + \underbrace{\int_{x_{\min}}^{\widehat{x}} u \left(x\right)}_{\text{Defaulted on}}\right) dF(x)$$

► Equilibrium: {b_ℓ, b_b, q} such that, given q, {b_ℓ, b_b} are optimal, and b_ℓ = b_b